A Spotlight on a Major Corporate Implementation Strategy for Continuous Manufacturing

CM deployment at Janssen: Different capabilities

Inspire Line

Only DC K-tron feeders, Glatt Blender, Korsch press,

Semi continuous Bohle coater In line BU with multihead NIR At line CU

~ 40 kg/hr throughput

Latina Line

Bin to bin feeding GEA Consiga type WG Space available for Coaters In line BU and humidty with LHP At line CU with Bruker Tandem

~ 100 kg/hr throughput

R&D Line

GEA Consiga type DC, WG & RC Mix of GEA and K-Tron feeders Courtoy press, Gerteis RC Space available for Coaters In line BU and humidty with LHP At line CU with Bruker Tandem ~25 kg/hr throughput

Janssen Deployment Strategy

Inspire

Latina

Mirror

CM will deliver on the needs of the business related to agility, reliability, cost, and quality. Our strategy for next 5 years is :

Optimizing CM performance by focusing on:

- Yield improvement
- Reduction of cleaning and change over time
- Real Time Release
- Batch Record review by exception

Using PAT and Modeling

Increasing utilization of current manufacturing lines

 Optimization of loading according to volume projections and new products coming in.

Launching New Products

- Initially on existing lines if possible
- Prepare to build an additional line by when it is needed

Investing in people and knowledge, collaborating with others to help aligning the industry and to Prepare the future.

<u>Can we make the business case – Challenges for Janssen and others</u>

<u>Benefits</u>	<u>Challenge</u>	
ROI	Facility cost, volume variation, free batch capacity	
Flexible batch size	Initially limited by validation run time	772
Speed to market	Combination with first installation of new technology	2000 E
Platform deployment	Convince product teams to move to CM	
QA/QC	FTE's need to be reduced in budget	
Yield improvements	Start and stop losses during unforeseen stops	
TT effort	Keeping eqt identical with Technology fast evolving	
Inventory	Safety stocks not reduced because of larger batch size	
Less development effort	Initially: additional effort for PAT & RTR	
TT effort	Pipeline volatility – need for flexible supply chain	
All integrated equipment	Integration software – communication - qualification	100
		Janssen

Can we make the business case? Current Status

<u>Benefits</u>	<u>Current status</u>
Cycle time	Significant reduction achieved
Operators	Yes: only 2-3 operators needed for DC process
QA, BR handling	Reduction achieved, no full FTE due to low volume
QC	Reduction achieved, no full FTE due to low volume Full RTR in progress
Investigations	Quantification needed
Yield - fixed/variable yield, rejects, exceeded WIP holding time	Yield improvements not as easy as initially thought, seems feasible, but will need time and work
Less water for cleaning	More CIP might eliminate this benefit
Supply chain flexibility	Achieved – change over time is key
Better process understanding	Achieved – QbD & PAT driven
Lower inventory	Only WIP

Janssen

Can we make the business case - Conclusion

Conclusion: YES WE CAN - but improvement needed:

- → TRUST
- → Installation Cost & Risk
- → Efficiency & Change over time

Knowledge needed:

- → Process understanding
- → Predictive models
- → Regulatory alignment
- → More capacity internal and external

Control Strategy Considerations

Perturbations
Understanding sources of variaton

Particle properties - Material behavior - Blend behavior

Material variation

Disturbances

Drift, system dynamics

Start-up & Shut down, state of control

Determine blender backmixing

Impact of throughput

Define your tracer

RTD or PAT

Feeder studies

Sampling considerations, Measuring frequency

Development steps of Janssen first CM product

Different approaches: Equipment design

Line design

• Throughput 25-200kg; lean & simple <-> flexible

• One technology WG or DC <-> DC, WG, RC, DE

Techn. Options

• Vertical vs horizontal set-up; one floor vs several floors

• Pre-blend or in-line feeding; Coating or not

Feeding

• Throughput, Solutions for difficult flow

• Change over speed, equipment size

Blending

• Ribbon, horizontal, inclided, vertical

Adjustable hold-up – adjustable peddles

Granulation

• Roller compaction, Twin Screw, FBG, ring granulator

Dryer: 6 or 10 segments - separate pots - Screw

Coating

- Semi batch coating small or large Full continuous
- Spray location; Tablet Relaxation system;

PAT

• BU: LHP,

Different approaches: Control Strategies

PAT

Minimize use of PAT – only for development

Process Control

No feedback – feed forward

BU measurement

Automated Process control of throughput/holdup vs RTD

Use PAT for maximum understanding and monitoring

Last BU measurement in feed frame of tablet press

Rejection

Last BU measurement between blender & hopper tablet press

Only at exit tablet press

• Automatic/manual rejection points before tablet press

Traceability

Assume all impacted for low volume products

PAT <-> RTD

Supporting Data

- Leverage existing data and experience
- Only new data from CM process and unit operations

RTR

- Full RTR from the beginning <-> file in phases <-> no RTR
- Use of RTR depending on the business case

Different approaches: Business strategies

Business Cases

- Quality
- Cost: Development TT Commercial
- Supply chain flexibility & agility

Deployment

- Product focus New product or conversion <-> Platform
- Identical lines <-> different lines development & commercial

Development

- At vendor <-> At CMO <-> In house
- Integrated with DS <-> clear reqts. for API <-> ad hoc API improvement

Technology

- One technology WG or DC <-> DC, WG, RC, DE
- Pre-blend or in line feeding; Coating or not

Modeling

- Impact of : transfer material variation cumulative variations
- Up scaling <-> downscaling

Implementation difficulties of New vs. Marketed products

Future evolutions needed to support deployment in the Industry

Alignment between Regulatory reviewers/inspectors/countries:

- → Mechanismes for early interaction
- → Same and clear regts. for BE studies, CPV, data before PPQ
- → Parallel alternate Control Strategies

Find more ways to minimize API consumption in development

Improve efficiency of commercial lines

→ Shorter CO and cleaning time, less yield losses

Flexibiliy towards future designs

→ Modular approach, harmonized interfaces

Reduce cost and implementation risk of new lines

How collaboration can help

How can Pharma companies help each other?

- → Share understanding of differences between brands, types and sizes of unit ops.
- → Share understanding of risks and impact of variation in material, process, environment
- → create trust based on data and real case studies
- → Create a network of TPM capacity that is flexible and compatible with different types of lines
- → Align on concepts for equipment harmonization

How can Vendors help?

- → Deep understanding of the difference between different brands, types and sizes of unit ops.
- → Translate expertise into CM knowledge in useful format for Pharma
- → Build strong knowledge on yield losses, share data
- → Minimize yield losses, Change Over and Cleaning time
- → Maximize throughput
- → Design new ways to feed difficult API
- → Offer strong support package: process, validation, chemometric models, model maintenance packages,...
- → Modular equipment design, interchangeability of unit operations