

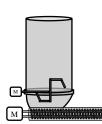
Advanced Pharmaceutical Manufacturing as an Enabler of QbD and Science-based Regulation Solid Dose Case Study

May 9, 2017

Presented by Fernando J. Muzzio Director, C-SOPS

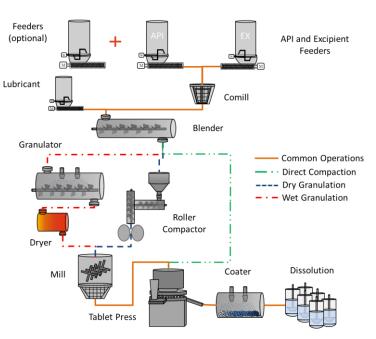
Advanced Pharmaceutical Development

The goal is to model pharmaceutical processes in silico and use these tools for optimization


Material Properties

e.g., Flow, Bulk Density, Angle of Repose

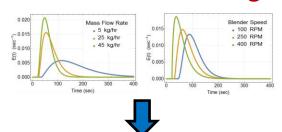
Unit Ops Models

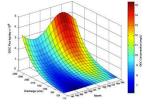


e.g., Feeders

$$y = f(x, a, t, m, n)$$

$$\frac{dy}{dt} = g(x, a, t, m, n)$$


Integrated Process Model "Flowsheets"


Operating Parameters & Design

Predictive Modeling

Reduced Order Model

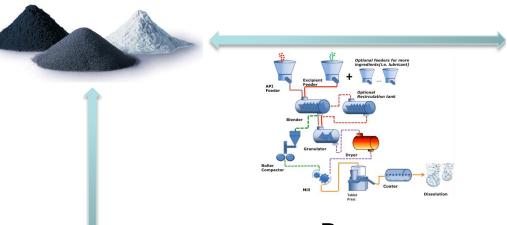
$$y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \varepsilon$$

Optimization

$$\min f(x)$$

$$st. \ h(x) = 0$$

$$g(x) \notin 0$$


The Design Chain

How does the process create a structure?

How do material properties affect the structure?

How does the structure determine performance?

Bulk Ingredient

Product

In vitro

performance

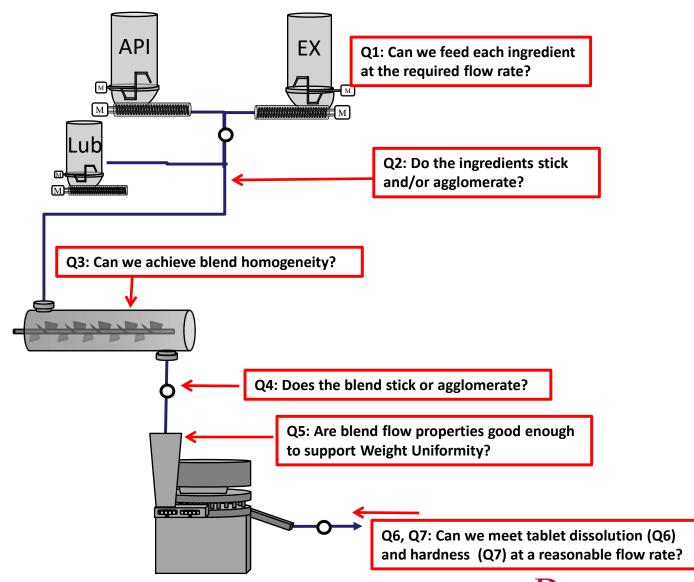
In vivo performance

Crystal

A Strategy for Minimizing time and materials Maximizing process understanding

(as defined as part of the collaboration with Janssen)

- Identify system failure modes
- Define measurements and metrics to predict impact of failure modes for a given formulation
- Build material property data base and predictive models for new materials and surrogates in unit ops
- Use relevant failure mode knowledge to define DOEs and select PAT and control
- Perform integrated formulation and process optimization

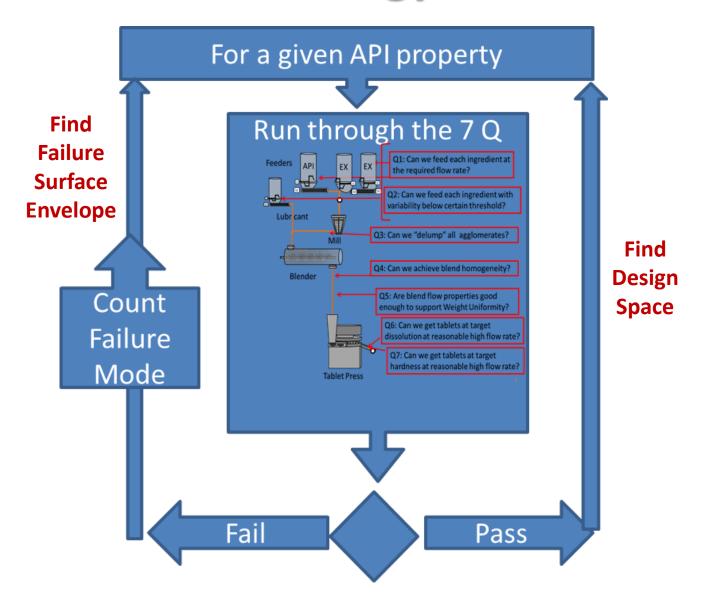


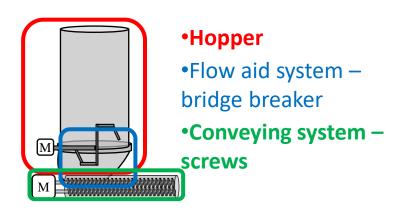
Critical Questions in DCCM

(as defined as part of the Collaboration with Janssen)

Improving API processability

Minimizing amounts of API needed in development





Strategy

TGERS What can go wrong in a Feeder?

- Clogging Obstructions:
 - Cohesion, Electrostatic (Surface Energy?, PSD?)
- Fluctuations
 - Compressibility.
- Refill
- Low Flow Rate is more challenging

Approach

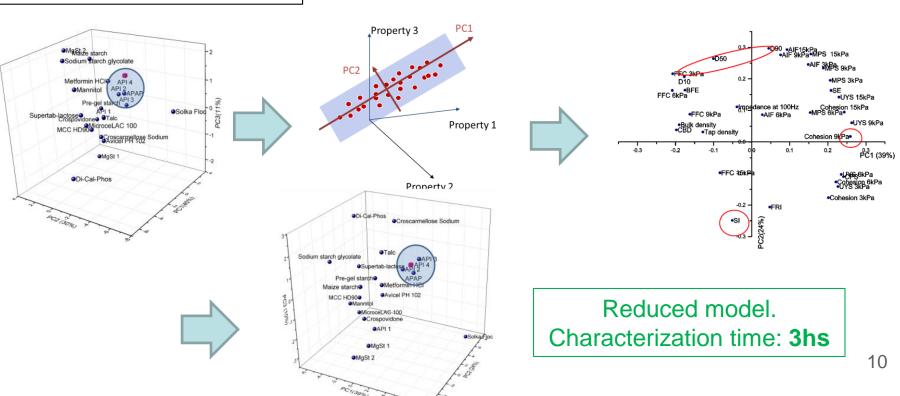
Manufacturability (Next steps)

Feeder Characterization Q1: Can we feed each ingredient at the required flow rate? Q2: Can we feed each ingredient with variability below certain threshold? Q3: Does the blend stick/or agglomerate? Blender

Q4: Can we achieve blend homogeneity?

Q5: Are blend flow properties good enough to support weight uniformity? Tablet
Characterization

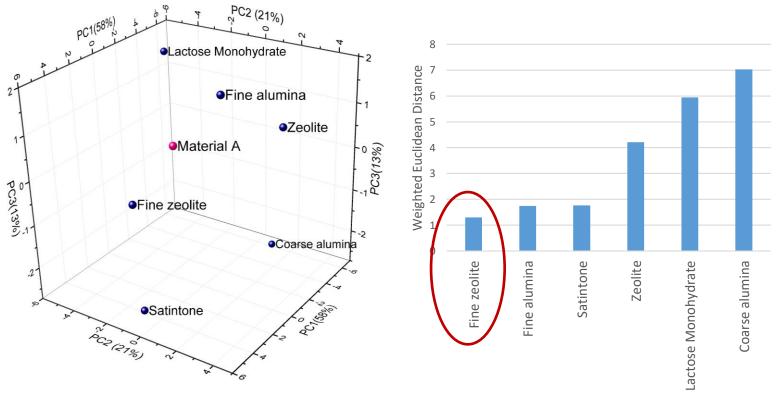
Qo. Can we get tablets at target hardness at reasonable high flow rate? Q6: Can we get tablets at target dissolution at reasonable high flow


Characterization Techniques

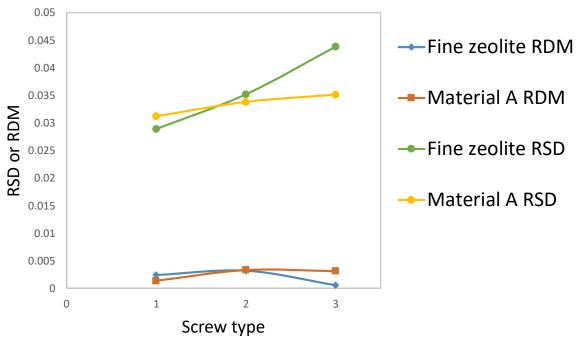
- Particle size distribution
 - d10, d50, d90
- Shear cell test
 - Cohesion, Unconfined Yield Strength, Major Principal Stress, Flow Function Coefficient, and Angle of Internal Friction at initial consolidation stresses of 3kPa, 6kPa, 9kPa, and 15kPa
- Compressibility test
 - Conditioned bulk density, Compressibility index
- Permeability test
 - Pressure drop
- Stability/ Variable Flow Rate test
 - Basic Flow Energy, Stability Index, Specific Energy, Flow Rate Index
- Electrostatics
 - Impedance, dry impedance

Define the design space

- 10-15 measurement techniques with 35-50 measured parameters
- Only 3-5 can explain more than 85% of variability


Full model. Characterization time: 11hs

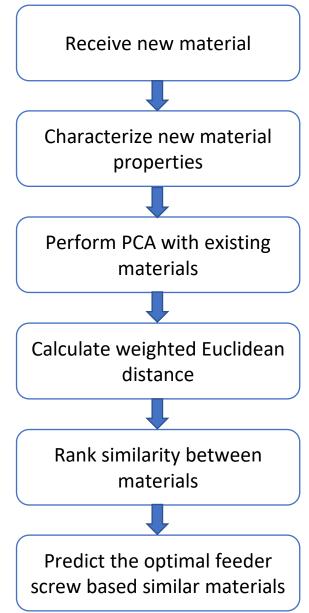
Predicting feeding performance from material flow properties


- For a given new material, can we compare it to existing materials in the library?
- Once a new material is included in the material library, can we predict its feeder performance?
- Can we predict the optimal screw choice for a given new material?

Similarity scores of the new material

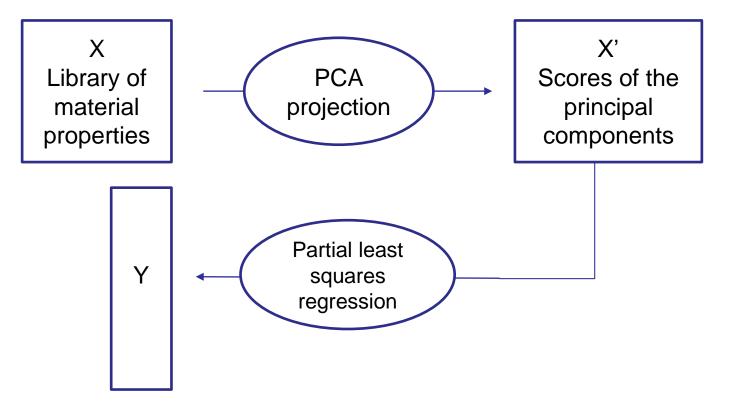
Material similarity can be quantified by calculating weighted Euclidean distance. Smaller distance corresponds to higher similarity.

Prediction using similarity scores

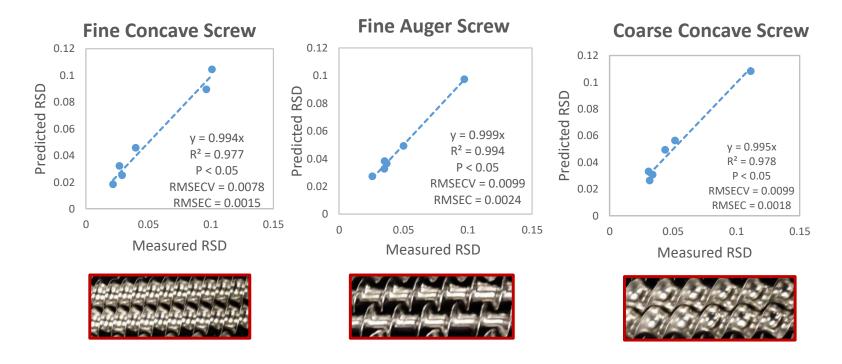


screw type 1 screw type 2 screw type 3 coarse concave screw

fine concave screw


fine auger screw

coarse concave screw


Prediction using PLS regression

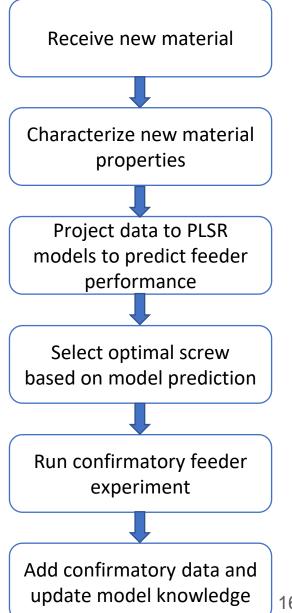
Alternatively, when material with matching flow properties is difficult to find, a partial least squares (PLS) regression can be used. A PLS regression model relates material flow properties directly to feeder performance, quantified by RSD and RDM.

Predicting feeding performance

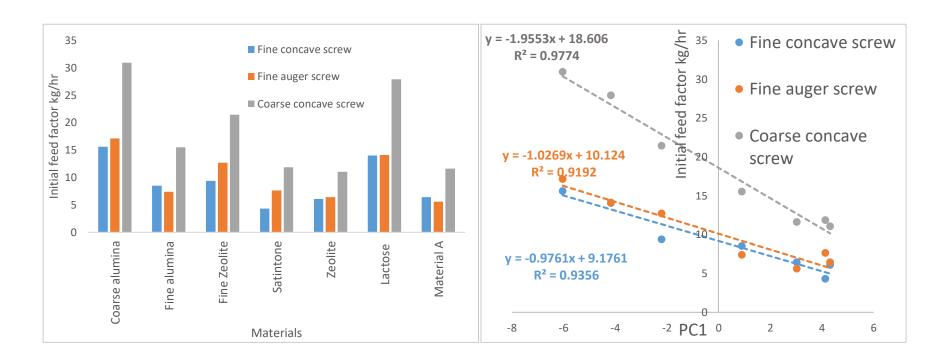
- PLS regression helps to answer:
- 1. For a new material with given properties, can we predict RSD or RDM for a certain screw?
 - 2. For a new material, what is the optimal screw selection?

TGERS

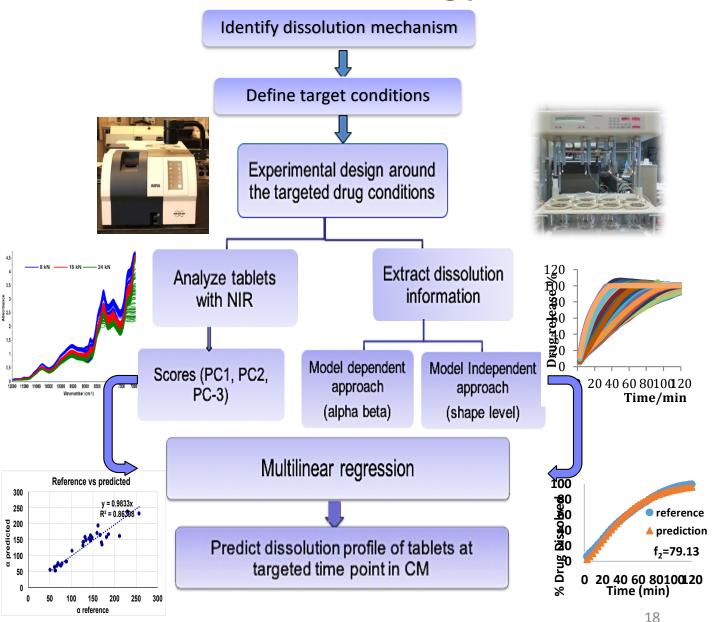
Prediction using PLSR models


screw type 1 fine concave screw

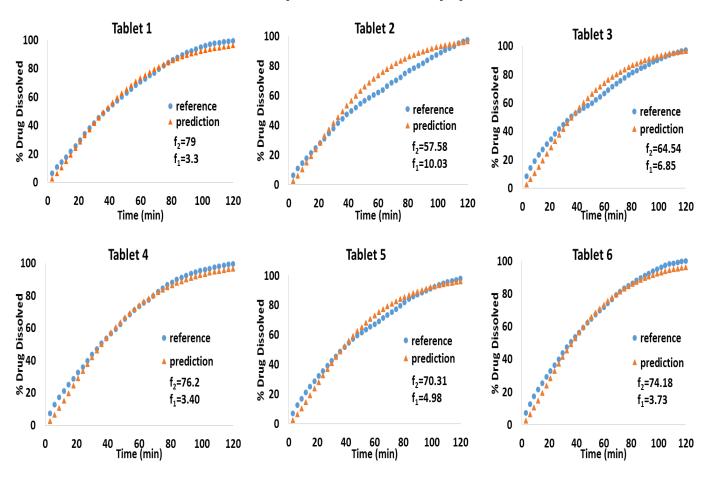
screw type 2 fine auger screw



screw type 3 coarse concave screw



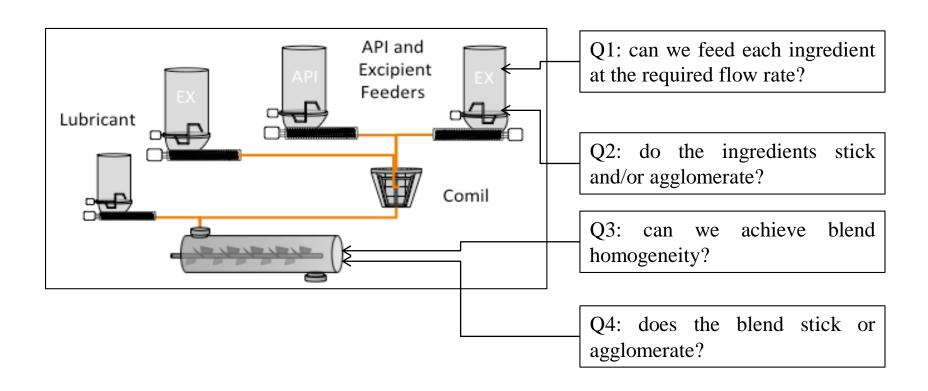
Predicting feed factor from material properties



- Initial feed factor reflects maximal feeding capacity for a material.
- Results show that using scores of the first principal component, the initial feed factor can be predicted based on the linear correlation.
- The feed factor using different screws can also be predicted.

RUTGERS General dissolution prediction methodology

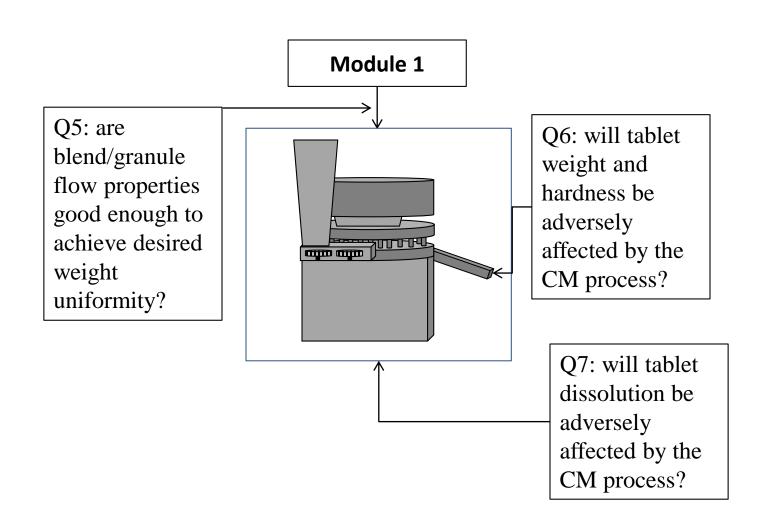
Capability of predict individual tablet dissolution profile: Model-dependent approach



<u>Reference</u>: dissolution profiles

Predicted: NIR PCs

Module 1 – feeders and blenders



RUTGERSder, Mill, Blender: Inputs and Outputs

Unit Op	Inputs	Processing Parameters	Responses	Output Material Properties
Feeder (i)	RM Cohesion (i) [Coh1i] RM Compressibility (i) [Cps1i]	RPM Impeller (RPM1)	Feeder Flow Rate (FFR) = f [Coh1, Cps1, SE1, E1, RPM1, RPM2,FR, HSG, ST]	<u>Cohesion 2 (Coh2)</u> = f[Coh1, Cps1, SE1, E1, RPM1, RPM2,FR, HSG, ST]
	RM Surface Energy (i) [SE1i] RM Electrostatic (i) [E1i]	RPM Screw (RPM2)	Feeder Flow Rate Variability $(\sigma_{FFR}) = f[Coh1, Cps1, SE1, E1, PRM3, FR. USC, ST]$	
	RM PSD ⁽ⁱ⁾ [PSD1 ⁱ] RM Bulk Density ⁽ⁱ⁾ [BD1 ⁱ]	Refill Rate (RR) Hopper Size/geometry (HSG) Screw type (ST)	RPM1, RPM2,FR, HSG, ST]	<u>Powder Bulk Density2 (DB2)</u> = f [Coh1, Cps1, SE1, E1, RPM1, RPM2,FR, HSG, ST]
Mill	Coh2 ⁽ⁱ⁾ σFFR2 ⁽ⁱ⁾	RPM Blade (RPM3)	Mill Holdup	Blend Homogeneity 3 (BH3) = f[Coh2, σFFR2, RPM3, FR5,
	Composition (PSD, (i) [C%] Bulk Density2 (i) [BD2i]	Mill Screen (MS)		C%, MSSG, ST] Agglomeration 3 (Ag3) = f[Coh2, σ FFR2, RPM3, FR5, HSG, ST, C%]
	Hip: Density has no effect beyond what's captured by cohesion	Screw type (ST) Spacers Geometry (SG)		Cohesion 3 (Coh3) = f[Coh2, σFFR2, RPM3, FR5, HSG, ST, C%] Density 3 (D3) = f [Coh2, σFFR2, RPM3, FR5, HSG, ST, C%]
Blender	Blend Homogeneity 3 [BH3]	RPM Blade (RPM4)	Holdup (investigate composition in blender)	Lubricity4 (L4) =f[FR5, Ag3, RPM4, BG, STBP, C%]
	Agglomeration 3 [Ag3] Composition [C%]	Blender Geometry (BG)	Blender Residence Time (BRT) Dispersion Coefficient (BDC)	Compatibility (Cpt4) = f[L4, FR5, Ag3, RPM4, BG, STBP, C%, PSD3 (i)]
	Cohesion 3 [Coh3] Bulk Density 3 [BD3]		Blade Passes (BBP)	Cohesion 4 (Coh4) = f[Coh3, L4, RPM4, FR5, Ag3, HSG, ST, C%] Agglomeration 4 (Ag4) = f [RPM4, FR5,
	Mill Holdup	Screw type/ Blade pattern (STBP)		Ag3, HSG, ST, C%] Blend Homogeneity 4 (BH4) =f[BH3, RPM4, FR5, Ag3, HSG, ST, C%] Bulk Density 4 (BD4) =f [BD3, L4, RPM4, FR5, Coh3, HSG, ST, C%]

Feed Frame and Tablet Press

Feed Frame and Tablet Press: Inputs and Outputs

Unit Op	Inputs	Processing Parameters	Responses	Product Properties
Tablet Press	Lubricity [L4] Compactibility [Cpt4]	RPM Feed Frame (RPM5)	Compaction Force (CF) Ejection Force (EF)	Tablet Thickness (TH5) = f[FR, L4, RPM5, CH, ThG, FC, C%, FFG, TT, #S, PC]
		RPM Turret (RPM6 = Flow Rate (FR))	Dwell Time (DT)	
		in writing a riow face (FR))		Weight Variability (WV5) = f[L4, FR, Ag4, RPM5, Coh4, BH4, BD4, CH, C%, FFG, TT,
	Composition [C%]	Chute Height (CH)		#S, PC]
		Thickness Gap (ThG)		Tablet Density (porosity) 5 (TD5) = f [Coh4, L4, RPM4, FR, Ag3, PSD(i), C%]
Feed Frame	Cohesion 4 [Coh4]	Fill Cam [FC]		Content Uniformity 5 (CU5) = f[BH4,
Fiaille		Feed Frame Geometry (FFG)		RPM5, Ag4, WV5, C%, FFG, TT, #S, PC]
	Agglomeration 4 [Ag4]	Tablet Tooling (TT)		
	Blend Homogeneity 4 [BH4]			<u>Hardness 5 (H5)</u> = f[Cpt4, RPM5, FR, L4,
		# stations (#S)		WV5, C%, FFG, TT, #S, PC]
	Bulk Density 4 [BD4]	. (26)		Dissolution 5 (Diss5) = [Cpt4, RPM5, FR,
		Pre Compression (PC)		L4, WV5, C%, FFG, TT, #S, PC]

Material Properties-Process

Parameters Interrelation

EX

Raw Material Properties (RMP)

Cohesion1.
Compressibility
Electrostatics
Surface Energy
PSD

Lubricant

Feeders

00000000

EX

Mill

API

Process Parameters

RPM2 (Mill)

Screen Size

Process Parameters

RPM3 (Blender)

Process Parameters

RPM5 (Feed Frame)

RPM6 (flow Rate)

Chute Height (CH)

Thickness Gap (ThG)

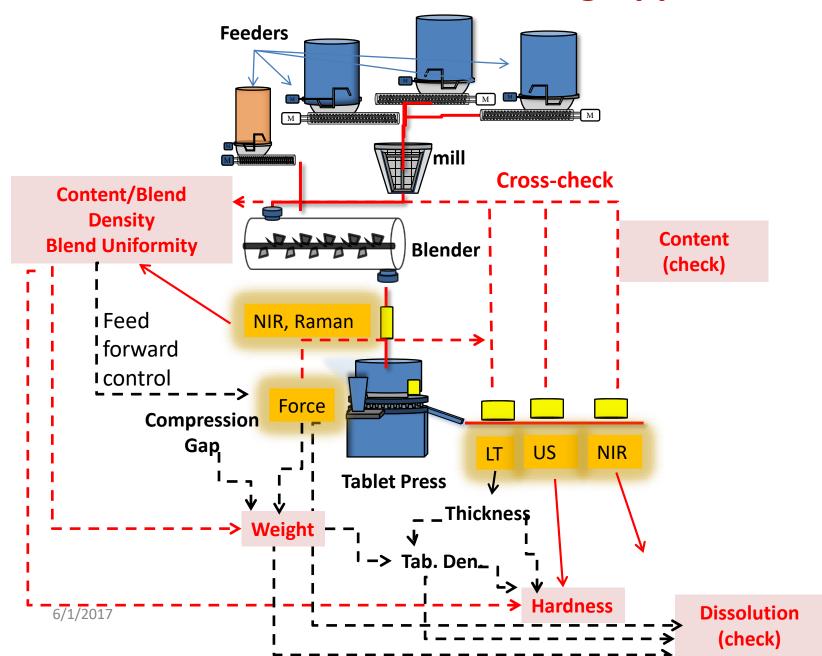
Pre Compaction (PC)

Fill Cam [FC]

Lubricated Blend

Intermediate Material Properties (IMP)

Lubricity4
Compactability4.
Cohesion4
Agglomeration4
Blend Homogeneity4
Bulk Density4


Product

Product Material Properties (RMP)

Thickness
Weight Variability
Density (porosity)
Content Uniformity
Hardness
Dissolution

General RTR Sensing Approach

Conclusions

- Process Engineering toolbox quickly reaching maturity
- Real Time Quality Assurance, Closed Loop Control, RTR are all feasible
- Solid dose CM is just the beginning same toolbox applies, with moderate effort, to
 - API CM
 - Biologicals CM
 - Precision Manufacturing
- Non-destructive testing (dissolution predictions) potentially leads to new methods for understanding in vivo behavior
- Open Issue: What do we do with all this data?