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Advanced Pharmaceutical Development

The goal is to model pharmaceutical processes in silico and use these tools for optimization

Integrated Process Model
“Flowsheets”

Reduced Order Model

Operating Parameters 
& Design

Material Properties

Unit Ops Models

e.g., Flow, Bulk Density, 
Angle of Repose

y = f (x,a,t,m,n)

dy

dt
= g(x,a,t,m,n)

M

M

e.g., Feeders

min  f (x)

st.   h(x) = 0

      g(x) £ 0

Optimization

Predictive Modeling
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The Design Chain

Crystal

Bulk Ingredient

Process

Product

In vitro 

performance

In vivo

performance

How does the process create a structure?

How do material properties affect the structure?

How does the structure determine performance?



A Strategy for
Minimizing time and materials
Maximizing process understanding
(as defined as part of the collaboration with Janssen)

• Identify system failure modes

• Define measurements and metrics to predict 
impact of failure modes for a given formulation

• Build material property data base and predictive 
models for new materials and surrogates in unit 
ops

• Use relevant failure mode knowledge to define 
DOEs and select PAT and control 

• Perform integrated formulation and process 
optimization



M

M

EX

M

M

API

M

M

Critical Questions in DCCM
(as defined as part of the Collaboration with Janssen)

Q1: Can we feed each ingredient 
at the required flow rate?

Q2: Do the ingredients stick 
and/or agglomerate?

Q3: Can we achieve blend homogeneity?

Q5: Are blend flow properties good enough 
to support Weight Uniformity? 

Q4: Does the blend stick or agglomerate?

Q6, Q7: Can we meet tablet dissolution (Q6) 
and hardness (Q7) at a reasonable flow rate?

Lub

Improving API 

processability

Minimizing 

amounts of API 

needed in 

development



Strategy
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Find 
Design
Space

Find 
Failure
Surface

Envelope



What can go wrong in a Feeder?

– Clogging – Obstructions: 
• Cohesion, Electrostatic (Surface Energy?, PSD?)

– Fluctuations
• Compressibility.

– Refill

– Low Flow Rate is more challenging
7
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•Hopper

•Flow aid system –
bridge breaker

•Conveying system –
screws



Manufacturability (Next steps)

Q1: Can we feed each ingredient at the required flow rate?

Q2: Can we feed each ingredient with variability below certain 

threshold?

Feeder 

Characterization

Blender 

Characterization

Tablet 

Characterization

Approach

Q6: Can we get tablets at target dissolution at reasonable high flow 

rate? 

Q7: Can we get tablets at target hardness at reasonable high flow 

rate? 

Q3: Does the blend stick/or agglomerate?

Q4: Can we achieve blend homogeneity?

Q5: Are blend flow properties good enough to support weight 

uniformity? 
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Characterization Techniques

• Particle size distribution

– d10, d50, d90

• Shear cell test

– Cohesion, Unconfined Yield Strength, Major Principal Stress, Flow 

Function Coefficient, and Angle of Internal Friction at initial consolidation 

stresses of 3kPa, 6kPa, 9kPa, and 15kPa

• Compressibility test

– Conditioned bulk density, Compressibility index

• Permeability test

– Pressure drop

• Stability/ Variable Flow Rate test

– Basic Flow Energy, Stability Index, Specific Energy, Flow Rate Index

• Electrostatics

– Impedance, dry impedance



• 10-15 measurement techniques with 35-50 measured parameters

• Only 3-5 can explain more than 85% of variability

Reduced model. 

Characterization time: 3hs

Full model. 

Characterization time: 11hs

Define the design space
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Predicting feeding performance from material flow properties
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• For a given new material, can we compare it to existing materials 

in the library?

• Once a new material is included in the material library, can we 

predict its feeder performance? 

• Can we predict the optimal screw choice for a given new 

material? 



Similarity scores of the new material
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Material similarity  can be quantified by calculating weighted Euclidean 

distance. Smaller distance corresponds to higher similarity.  



Receive new material

Characterize new material 
properties

Perform PCA with existing 
materials

Calculate weighted Euclidean 
distance

Rank similarity between 
materials

Predict the optimal feeder 
screw based similar materials

Prediction using similarity scores
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Prediction using PLS regression
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X

Library of 

material 

properties

X’

Scores of the 

principal 

components

Y

PCA

projection

Partial least 

squares 

regression

Alternatively, when material with matching flow properties is difficult to find, 

a partial least squares (PLS) regression can be used. A PLS regression 

model relates material flow properties directly to feeder performance, 

quantified by RSD and RDM. 



Predicting feeding performance
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y = 0.994x
R² = 0.977
P < 0.05

RMSECV = 0.0078
RMSEC = 0.00150
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y = 0.999x
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y = 0.995x
R² = 0.978
P < 0.05

RMSECV = 0.0099
RMSEC = 0.0018

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15

P
re

d
ic

te
d

 R
SD

Measured RSD

Coarse Concave Screw 

• PLS regression helps to answer:

1. For a new material with given properties, can we predict RSD or RDM 

for a certain screw? 

2. For a new material, what is the optimal screw selection?
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Predicting feed factor from material properties 
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y = -0.9761x + 9.1761
R² = 0.9356

y = -1.0269x + 10.124
R² = 0.9192

y = -1.9553x + 18.606
R² = 0.9774
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• Initial feed factor reflects maximal feeding capacity for a material.

• Results show that using scores of the first principal component, the 

initial feed factor can be predicted based on the linear correlation. 

• The feed factor using different screws can also be predicted. 
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Define target conditions
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methodology
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Capability of predict individual tablet 
dissolution profile: 

Model-dependent approach

Reference: dissolution profiles
Predicted: NIR PCs 19



Module 1 – feeders and blenders
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Q1: can we feed each ingredient

at the required flow rate?

Q2: do the ingredients stick

and/or agglomerate?

Q3: can we achieve blend

homogeneity?

Q4: does the blend stick or

agglomerate?



Unit Op Inputs Processing Parameters Responses Output Material Properties 

Feeder
(i)

RM Cohesion (i) [Coh1i]
RPM Impeller (RPM1) 

Feeder Flow Rate (FFR) = f
[ Coh1, Cps1, SE1, E1, RPM1, 

RPM2,FR, HSG, ST]
Cohesion 2  (Coh2) = f[Coh1, Cps1, SE1, 

E1, RPM1, RPM2,FR, HSG, ST]
RM Compressibility (i) [Cps1i]

RM Surface Energy (i) [SE1i] RPM Screw (RPM2) Feeder Flow Rate Variability
(sFFR ) = f[Coh1, Cps1, SE1, E1, 

RPM1, RPM2,FR, HSG, ST]
RM Electrostatic (i) [E1i]

Powder Bulk Density2  (DB2) = f [Coh1, 
Cps1, SE1, E1, RPM1, RPM2,FR, HSG, ST]

Refill Rate (RR)RM PSD (i) [PSD1i]  

RM Bulk Density (i) [BD1i]  
Hopper Size/geometry (HSG) 

Screw type (ST)

Mill

Coh2 (i) RPM Blade (RPM3) Mill Holdup Blend Homogeneity 3 
(BH3) = f[ Coh2, sFFR2, RPM3, FR5, 

C%, MSSG, ST]
sFFR2(i)

Composition (PSD,  (i) [C%] Mill Screen (MS) 
Agglomeration 3 (Ag3) = f[Coh2, sFFR2, 

RPM3, FR5, HSG, ST, C%]Bulk Density2 (i) [BD2i]  
Hip: Density has no effect 

beyond what’s captured by 
cohesion

Screw type (ST)
Spacers Geometry (SG)

Cohesion 3 (Coh3) = f[Coh2, sFFR2, 
RPM3, FR5, HSG, ST, C%]

Density 3 (D3) = f [Coh2, sFFR2, RPM3, 
FR5, HSG, ST, C%]

Blender

Blend Homogeneity 3 
[BH3]

RPM Blade (RPM4)
Holdup (investigate composition 

in blender)
Lubricity4 (L4) =f[FR5, Ag3, RPM4, BG, 

STBP, C%]

Agglomeration 3 [Ag3] Blender Residence Time (BRT) Compatibility (Cpt4 ) = f[L4, FR5, Ag3, 
RPM4, BG, STBP, C%, PSD3 (i)]Composition  [C%] Blender Geometry (BG) Dispersion Coefficient (BDC)

Cohesion 3 [Coh3]

Screw type/ Blade pattern  
(STBP)

Cohesion 4 (Coh4) = f[Coh3, L4, RPM4, 
FR5,  Ag3, HSG, ST, C%]

Blade Passes (BBP)
Bulk Density 3 [BD3]

Agglomeration 4 (Ag4) = f [RPM4, FR5,  
Ag3, HSG, ST, C% ]

Mill Holdup

Blend Homogeneity 4 
(BH4) =f[BH3, RPM4, FR5,  Ag3, HSG, ST, 

C% ]

Bulk Density 4
(BD4) =f [BD3, L4, RPM4, FR5,  Coh3, 

HSG, ST, C% ]

Feeder, Mill, Blender: Inputs and Outputs



Feed Frame and Tablet Press 
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Module 1

Q5: are 

blend/granule 

flow properties 

good enough to 

achieve desired 

weight 

uniformity? 

Q6: will tablet 

weight and 

hardness be 

adversely 

affected by the 

CM process?

Q7: will tablet 

dissolution be 

adversely 

affected by the 

CM process?



Unit Op Inputs Processing Parameters Responses Product Properties 

Tablet 
Press
and 
Feed 

Frame

Lubricity [L4]
RPM Feed Frame (RPM5)

Compaction Force (CF)
Tablet Thickness (TH5) = f[ FR, L4, RPM5,

CH, ThG, FC, C%, FFG, TT, #S, PC]
Compactibility [Cpt4] Ejection Force (EF)

RPM Turret (RPM6 = Flow Rate (FR)) Dwell Time (DT)

Weight Variability (WV5) =  f[L4, FR, Ag4, 
RPM5, Coh4, BH4, BD4, CH, C%, FFG, TT, 

#S, PC]Chute Height (CH)
Composition  [C%]

Tablet Density (porosity) 5 (TD5) = f 
[Coh4, L4, RPM4, FR,  Ag3, PSD(i), C%]

Thickness Gap (ThG)

Cohesion 4 [Coh4] Fill Cam [FC]

Content Uniformity 5 (CU5) = f[BH4, 
RPM5,  Ag4, WV5, C%, FFG, TT, #S, PC ]Feed Frame Geometry (FFG) 

Agglomeration 4 [Ag4] Tablet Tooling (TT)
Hardness 5 (H5) = f[Cpt4, RPM5,  FR, L4, 

WV5, C%, FFG, TT, #S, PC ]
Blend Homogeneity 4 [BH4]

# stations (#S)

Bulk Density 4 [BD4]
Dissolution  5 (Diss5) = [Cpt4, RPM5,  FR, 

L4, WV5, C%, FFG, TT, #S, PC ]
Pre Compression (PC)

Feed Frame and Tablet Press: Inputs and Outputs



Material Properties-Process 
Parameters Interrelation
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Lubricated Blend
Raw  Material 

Properties (RMP)

Cohesion1.
Compressibility

Electrostatics
Surface Energy

PSD 

Process Parameters

RPM2  (Mill)

Screen Size

Process Parameters

RPM3 (Blender)

Intermediate Material 
Properties (IMP)

Lubricity4
Compactability4.

Cohesion4
Agglomeration4

Blend Homogeneity4
Bulk Density4 

M

M

API

M

M

Lubricant

Feeders 

Mill

Process Parameters

RPM5 (Feed Frame)

RPM6 (flow Rate)

Chute Height (CH)

Thickness Gap (ThG)

Pre Compaction (PC)

Fill Cam [FC]

Product Material 
Properties (RMP)

Thickness
Weight Variability
Density (porosity)

Content Uniformity
Hardness

Dissolution

Product

M

EX

M

EX
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Tablet Press

Blender

Feeders

mill

AP
I

M

M

M

M

M

M

M

M

General RTR Sensing Approach 

Content/Blend 
Density

Blend Uniformity

NIR, Raman

LT

Thickness

Tab. Den.

US

Hardness

NIR

Dissolution 
(check)

Feed 
forward 
control

Force

Weight

Compression 
Gap

Cross-check

Content 
(check)



Conclusions

• Process Engineering toolbox quickly reaching maturity

• Real Time Quality Assurance, Closed Loop Control, RTR are all 
feasible

• Solid dose CM is just the beginning – same toolbox applies, 
with moderate effort, to
– API CM

– Biologicals CM

– Precision Manufacturing 

• Non-destructive testing (dissolution predictions) potentially 
leads to new methods for understanding in vivo behavior

• Open Issue: What do we do with all this data?
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