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Methods and Materials (Part 2)

X-Ray Diffraction Results

Plants are a renewable resource suited for energy production and fuel needs; however, the conversion of F5 X-Ray Diffrackioi Patternsof Cori Stoverand €1 Samiples
lignocellulosic biomass to fuels is hindered by plant recalcitrance to sugar extraction. Cellulose is the most abundant
organic molecule in plant cell walls that, in its natural cellulose-I form, remains resistant to enzymatic hydrolysis, the / \ / \ / \ Figure 5 shows the 10000
breaking down of sugars. Transforming cellulose-I to cellulose-lll through ammonia-based treatment decreases X-Ray Diffraction s
hydrolytic resistance, yet the amount of enzymes needed to achieve high sugar yields remains costly. By analyzing Determination Biomass . (XRD) patterns for
and comparing the yields of the hydrolysis of untreated and treated cellulose-I and Ill and corn stover samples of Total Solids — ) — DNS Reducmg untreated corn stover, ad
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ammonium thiocyanate at 25°C) samples versus the Avicel 50-AT (treated at 50°C) samples. Corn stover responds \ / \ / \ / corn Stover, an E.- 6000
similarly, but overall yields for CS are lower than for cellulose. With this data, there is a potential for more cost- and cellulose-1. Both the g
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Figure 6 shows the X-Ray Diffraction Patterns of Cellulose Samples
e Cellulose-l: cellulose I and cellulose la are the predominant forms of cellulose in higher plants o o XRD data for 10000
and primitive microorganisms respectively. The cellulose I in plants can be transformed into other E nzym atIC Hyd rO IVS'S RESU |tS cellulose-l,
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allomorphic forms through thermochemical treatment.
e Cellulose-lll: cellulose Il is a nonnative form of cellulose formed through treatment with amines or
ammonia. It demonstrates significant improvement in recalcitrance versus cellulose I3 and other .
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Reducing Sugar Concentration of Batch 6 Avicel and Corn Stover Samples, 24 Hour Incubation
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reverse trends for the 25-AT versus 50-AT treatments.
Cellulose samples yield higher concentrations of
reducing sugars than the corn stover samples at all
treatment levels with the exception of the 50-AT. All 5
samples were spun down before DNS assay, and only the

supernatant was taken. The untreated CS, C-I, and C-llI

samples acted as positive controls.
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e C.Tec2: Cellic C.Tec2 is an enzyme cocktail composed of various cellulases, hemicellulases, and
B-glucosidases that specializes in the breakdown of cellulose into fermentable sugars. The
enzyme is advantageous in that less can be used for higher sugar yields, and it operates optimally
around a pH of 5. (3)

e Corn stover: 38% (of dry mass) cellulose, 26% hemicellulose, 19% lignin, 4% acid detergent lignin,
5% crude protein, 6% ash (4)
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Glucan Conversion of Batch 6 Avicel and Corn Stover Samples, 24 hr Incubation
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F3 Reducing Sugar Concentration of Batch 7 Avicel Samples, 24 hr Incubation Figure 3 shows the measured e Increasing hydrolysis yields were obtained for the samples tested in the following
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